ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1401.5684
65
35

Model-based clustering for conditionally correlated categorical data

22 January 2014
M. Marbac
C. Biernacki
V. Vandewalle
    CML
ArXivPDFHTML
Abstract

An extension of the latent class model is presented for clustering categorical data by relaxing the classical "class conditional independence assumption" of variables. This model consists in grouping the variables into inter-independent and intra-dependent blocks, in order to consider the main intra-class correlations. The dependency between variables grouped inside the same block of a class is taken into account by mixing two extreme distributions, which are respectively the independence and the maximum dependency. When the variables are dependent given the class, this approach is expected to reduce the biases of the latent class model. Indeed, it produces a meaningful dependency model with only a few additional parameters. The parameters are estimated, by maximum likelihood, by means of an EM algorithm. Moreover, a Gibbs sampler is used for model selection in order to overcome the computational intractability of the combinatorial problems involved by the block structure search. Two applications on medical and biological data sets show the relevance of this new model. The results strengthen the view that this model is meaningful and that it reduces the biases induced by the conditional independence assumption of the latent class model.

View on arXiv
Comments on this paper