ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1401.5551
55
10

Algebraic Methods of Classifying Directed Graphical Models

22 January 2014
Hajir Roozbehani
Yury Polyanskiy
ArXivPDFHTML
Abstract

Directed acyclic graphical models (DAGs) are often used to describe common structural properties in a family of probability distributions. This paper addresses the question of classifying DAGs up to an isomorphism. By considering Gaussian densities, the question reduces to verifying equality of certain algebraic varieties. A question of computing equations for these varieties has been previously raised in the literature. Here it is shown that the most natural method adds spurious components with singular principal minors, proving a conjecture of Sullivant. This characterization is used to establish an algebraic criterion for isomorphism, and to provide a randomized algorithm for checking that criterion. Results are applied to produce a list of the isomorphism classes of tree models on 4,5, and 6 nodes. Finally, some evidence is provided to show that projectivized DAG varieties contain useful information in the sense that their relative embedding is closely related to efficient inference.

View on arXiv
Comments on this paper