94
21

Goodness-of-fit for log-linear network models: Dynamic Markov bases using hypergraphs

Abstract

Social networks and other large sparse data sets pose significant challenges for statistical inference, as many standard statistical methods for testing model fit are not applicable in such settings. Algebraic statistics offers a theoretically justified approach to goodness-of-fit testing that relies on the theory of Markov bases and is intimately connected with the geometry of the model as described by its fibers. Most current practices require the computation of the entire basis, which is infeasible in many practical settings. We present a dynamic approach to explore the fiber of a model, which bypasses this issue, and is based on the combinatorics of hypergraphs arising from the toric algebra structure of log-linear models. We demonstrate the approach on the Holland-Leinhardt p1p_1 model for random directed graphs that allows for reciprocated edges.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.