54
2

Differentially Private Data Releasing for Smooth Queries with Synthetic Database Output

Abstract

We consider accurately answering smooth queries while preserving differential privacy. A query is said to be KK-smooth if it is specified by a function defined on [1,1]d[-1,1]^d whose partial derivatives up to order KK are all bounded. We develop an ϵ\epsilon-differentially private mechanism for the class of KK-smooth queries. The major advantage of the algorithm is that it outputs a synthetic database. In real applications, a synthetic database output is appealing. Our mechanism achieves an accuracy of O(nK2d+K/ϵ)O (n^{-\frac{K}{2d+K}}/\epsilon ), and runs in polynomial time. We also generalize the mechanism to preserve (ϵ,δ)(\epsilon, \delta)-differential privacy with slightly improved accuracy. Extensive experiments on benchmark datasets demonstrate that the mechanisms have good accuracy and are efficient.

View on arXiv
Comments on this paper