45
22

Functional Mixture Discriminant Analysis with hidden process regression for curve classification

Abstract

We present a new mixture model-based discriminant analysis approach for functional data using a specific hidden process regression model. The approach allows for fitting flexible curve-models to each class of complex-shaped curves presenting regime changes. The model parameters are learned by maximizing the observed-data log-likelihood for each class by using a dedicated expectation-maximization (EM) algorithm. Comparisons on simulated data with alternative approaches show that the proposed approach provides better results.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.