ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1312.6173
55
155

Multilingual Distributed Representations without Word Alignment

20 December 2013
Karl Moritz Hermann
Phil Blunsom
ArXivPDFHTML
Abstract

Distributed representations of meaning are a natural way to encode covariance relationships between words and phrases in NLP. By overcoming data sparsity problems, as well as providing information about semantic relatedness which is not available in discrete representations, distributed representations have proven useful in many NLP tasks. Recent work has shown how compositional semantic representations can successfully be applied to a number of monolingual applications such as sentiment analysis. At the same time, there has been some initial success in work on learning shared word-level representations across languages. We combine these two approaches by proposing a method for learning distributed representations in a multilingual setup. Our model learns to assign similar embeddings to aligned sentences and dissimilar ones to sentence which are not aligned while not requiring word alignments. We show that our representations are semantically informative and apply them to a cross-lingual document classification task where we outperform the previous state of the art. Further, by employing parallel corpora of multiple language pairs we find that our model learns representations that capture semantic relationships across languages for which no parallel data was used.

View on arXiv
Comments on this paper