Let be a random vector drawn from the uniform distribution on the set of all permutations of . Let , where is the mean zero variance one random variable obtained by centralizing and normalizing , . Assume that are i.i.d. copies of and is the random matrix with as its th row. Then is called the Spearman's rank correlation matrix which can be regarded as a high dimensional extension of the classical nonparametric statistic Spearman's rank correlation coefficient between two independent random variables. In this paper, we establish a CLT for the linear spectral statistics of this nonparametric random matrix model in the scenario of high dimension, namely, and as . We propose a novel evaluation scheme to estimate the core quantity in Anderson and Zeitouni's cumulant method in [Ann. Statist. 36 (2008) 2553-2576] to bypass the so-called joint cumulant summability. In addition, we raise a two-step comparison approach to obtain the explicit formulae for the mean and covariance functions in the CLT. Relying on this CLT, we then construct a distribution-free statistic to test complete independence for components of random vectors. Owing to the nonparametric property, we can use this test on generally distributed random variables including the heavy-tailed ones.
View on arXiv