Swapping Variables for High-Dimensional Sparse Regression from Correlated Measurements

We consider the high-dimensional sparse linear regression problem of accurately estimating a sparse vector using a small number of linear measurements that are contaminated by noise. It is well known that standard computationally tractable sparse regression algorithms, such as the Lasso, OMP, and their various extensions, perform poorly when the measurement matrix contains highly correlated columns. We develop a simple greedy algorithm, called SWAP, that iteratively swaps variables until a desired loss function cannot be decreased any further. SWAP is surprisingly effective in handling measurement matrices with high correlations. In particular, we prove that (i) SWAP outputs the true support, the location of the non-zero entries in the sparse vector, when initialized with the true support, and (ii) SWAP outputs the true support under a relatively mild condition on the measurement matrix when initialized with a support other than the true support. These theoretical results motivate the use of SWAP as a wrapper around various sparse regression algorithms for improved performance. We empirically show the advantages of using SWAP in sparse regression problems by comparing SWAP to several state-of-the-art sparse regression algorithms.
View on arXiv