21
34

Learning Mixtures of Discrete Product Distributions using Spectral Decompositions

Abstract

We study the problem of learning a distribution from samples, when the underlying distribution is a mixture of product distributions over discrete domains. This problem is motivated by several practical applications such as crowd-sourcing, recommendation systems, and learning Boolean functions. The existing solutions either heavily rely on the fact that the number of components in the mixtures is finite or have sample/time complexity that is exponential in the number of components. In this paper, we introduce a polynomial time/sample complexity method for learning a mixture of rr discrete product distributions over {1,2,,}n\{1, 2, \dots, \ell\}^n, for general \ell and rr. We show that our approach is statistically consistent and further provide finite sample guarantees. We use techniques from the recent work on tensor decompositions for higher-order moment matching. A crucial step in these moment matching methods is to construct a certain matrix and a certain tensor with low-rank spectral decompositions. These tensors are typically estimated directly from the samples. The main challenge in learning mixtures of discrete product distributions is that these low-rank tensors cannot be obtained directly from the sample moments. Instead, we reduce the tensor estimation problem to: aa) estimating a low-rank matrix using only off-diagonal block elements; and bb) estimating a tensor using a small number of linear measurements. Leveraging on recent developments in matrix completion, we give an alternating minimization based method to estimate the low-rank matrix, and formulate the tensor completion problem as a least-squares problem.

View on arXiv
Comments on this paper