ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1311.1894
24
63

Optimality of Thompson Sampling for Gaussian Bandits Depends on Priors

8 November 2013
Junya Honda
Akimichi Takemura
ArXivPDFHTML
Abstract

In stochastic bandit problems, a Bayesian policy called Thompson sampling (TS) has recently attracted much attention for its excellent empirical performance. However, the theoretical analysis of this policy is difficult and its asymptotic optimality is only proved for one-parameter models. In this paper we discuss the optimality of TS for the model of normal distributions with unknown means and variances as one of the most fundamental example of multiparameter models. First we prove that the expected regret of TS with the uniform prior achieves the theoretical bound, which is the first result to show that the asymptotic bound is achievable for the normal distribution model. Next we prove that TS with Jeffreys prior and reference prior cannot achieve the theoretical bound. Therefore the choice of priors is important for TS and non-informative priors are sometimes risky in cases of multiparameter models.

View on arXiv
Comments on this paper