ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1310.7813
43
15

Smoothness-Constrained Image Recovery from Block-Based Random Projections

8 October 2013
G. Coluccia
D. Valsesia
E. Magli
ArXiv (abs)PDFHTML
Abstract

In this paper we address the problem of visual quality of images reconstructed from block-wise random projections. Independent reconstruction of the blocks can severely affect visual quality, by displaying artifacts along block borders. We propose a method to enforce smoothness across block borders by modifying the sensing and reconstruction process so as to employ partially overlapping blocks. The proposed algorithm accomplishes this by computing a fast preview from the blocks, whose purpose is twofold. On one hand, it allows to enforce a set of constraints to drive the reconstruction algorithm towards a smooth solution, imposing the similarity of block borders. On the other hand, the preview is used as a predictor of the entire block, allowing to recover the prediction error, only. The quality improvement over the result of independent reconstruction can be easily assessed both visually and in terms of PSNR and SSIM index.

View on arXiv
Comments on this paper