ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1310.6928
43
16
v1v2v3 (latest)

Non-asymptotic performance analysis of importance sampling schemes for small noise diffusions

25 October 2013
K. Spiliopoulos
ArXiv (abs)PDFHTML
Abstract

In this note we develop a prelimit analysis of performance measures for importance sampling schemes related to small noise diffusion processes. In importance sampling the performance of any change of measure is characterized by its second moment. For a given change of measure, we characterize the second moment of the corresponding estimator as the solution to a PDE, which we analyze via a full asymptotic expansion with respect to the size of the noise and obtain a precise statement on its accuracy. The main correction term to the decay rate of the second moment solves a transport equation that can be solved explicitly. The asymptotic expansion that we obtain identifies the source of possible poor performance of nevertheless asymptotically optimal importance sampling schemes and allows for more accurate comparison among competing importance sampling schemes.

View on arXiv
Comments on this paper