ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1309.6823
33
5

Convex Relaxations of Bregman Divergence Clustering

26 September 2013
Hao Cheng
Xinhua Zhang
Dale Schuurmans
ArXiv (abs)PDFHTML
Abstract

Although many convex relaxations of clustering have been proposed in the past decade, current formulations remain restricted to spherical Gaussian or discriminative models and are susceptible to imbalanced clusters. To address these shortcomings, we propose a new class of convex relaxations that can be flexibly applied to more general forms of Bregman divergence clustering. By basing these new formulations on normalized equivalence relations we retain additional control on relaxation quality, which allows improvement in clustering quality. We furthermore develop optimization methods that improve scalability by exploiting recent implicit matrix norm methods. In practice, we find that the new formulations are able to efficiently produce tighter clusterings that improve the accuracy of state of the art methods.

View on arXiv
Comments on this paper