ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1309.6013
38
131

A Max-Norm Constrained Minimization Approach to 1-Bit Matrix Completion

24 September 2013
Tony Cai
Wen-Xin Zhou
ArXivPDFHTML
Abstract

We consider in this paper the problem of noisy 1-bit matrix completion under a general non-uniform sampling distribution using the max-norm as a convex relaxation for the rank. A max-norm constrained maximum likelihood estimate is introduced and studied. The rate of convergence for the estimate is obtained. Information-theoretical methods are used to establish a minimax lower bound under the general sampling model. The minimax upper and lower bounds together yield the optimal rate of convergence for the Frobenius norm loss. Computational algorithms and numerical performance are also discussed.

View on arXiv
Comments on this paper