ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1308.2166
59
53

Parallel Triangle Counting in Massive Streaming Graphs

9 August 2013
Kanat Tangwongsan
A. Pavan
Srikanta Tirthapura
ArXiv (abs)PDFHTML
Abstract

The number of triangles in a graph is a fundamental metric, used in social network analysis, link classification and recommendation, and more. Driven by these applications and the trend that modern graph datasets are both large and dynamic, we present the design and implementation of a fast and cache-efficient parallel algorithm for estimating the number of triangles in a massive undirected graph whose edges arrive as a stream. It brings together the benefits of streaming algorithms and parallel algorithms. By building on the streaming algorithms framework, the algorithm has a small memory footprint. By leveraging the paralell cache-oblivious framework, it makes efficient use of the memory hierarchy of modern multicore machines without needing to know its specific parameters. We prove theoretical bounds on accuracy, memory access cost, and parallel runtime complexity, as well as showing empirically that the algorithm yields accurate results and substantial speedups compared to an optimized sequential implementation. (This is an expanded version of a CIKM'13 paper of the same title.)

View on arXiv
Comments on this paper