66
181

A New Convex Relaxation for Tensor Completion

Abstract

We study the problem of learning a tensor from a set of linear measurements. A prominent methodology for this problem is based on a generalization of trace norm regularization, which has been used extensively for learning low rank matrices, to the tensor setting. In this paper, we highlight some limitations of this approach and propose an alternative convex relaxation on the Euclidean ball. We then describe a technique to solve the associated regularization problem, which builds upon the alternating direction method of multipliers. Experiments on one synthetic dataset and two real datasets indicate that the proposed method improves significantly over tensor trace norm regularization in terms of estimation error, while remaining computationally tractable.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.