ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1307.4156
36
9

Efficient Mixed-Norm Regularization: Algorithms and Safe Screening Methods

16 July 2013
Jie Wang
Jun Liu
Jieping Ye
ArXivPDFHTML
Abstract

Sparse learning has recently received increasing attention in many areas including machine learning, statistics, and applied mathematics. The mixed-norm regularization based on the l1q norm with q>1 is attractive in many applications of regression and classification in that it facilitates group sparsity in the model. The resulting optimization problem is, however, challenging to solve due to the inherent structure of the mixed-norm regularization. Existing work deals with special cases with q=1, 2, infinity, and they cannot be easily extended to the general case. In this paper, we propose an efficient algorithm based on the accelerated gradient method for solving the general l1q-regularized problem. One key building block of the proposed algorithm is the l1q-regularized Euclidean projection (EP_1q). Our theoretical analysis reveals the key properties of EP_1q and illustrates why EP_1q for the general q is significantly more challenging to solve than the special cases. Based on our theoretical analysis, we develop an efficient algorithm for EP_1q by solving two zero finding problems. To further improve the efficiency of solving large dimensional mixed-norm regularized problems, we propose a screening method which is able to quickly identify the inactive groups, i.e., groups that have 0 components in the solution. This may lead to substantial reduction in the number of groups to be entered to the optimization. An appealing feature of our screening method is that the data set needs to be scanned only once to run the screening. Compared to that of solving the mixed-norm regularized problems, the computational cost of our screening test is negligible. The key of the proposed screening method is an accurate sensitivity analysis of the dual optimal solution when the regularization parameter varies. Experimental results demonstrate the efficiency of the proposed algorithm.

View on arXiv
Comments on this paper