Byzantine Convex Consensus: An Optimal Algorithm

Much of the past work on asynchronous approximate Byzantine consensus has assumed scalar inputs at the nodes [4, 8]. Recent work has yielded approximate Byzantine consensus algorithms for the case when the input at each node is a d-dimensional vector, and the nodes must reach consensus on a vector in the convex hull of the input vectors at the fault-free nodes [9, 13]. The d-dimensional vectors can be equivalently viewed as points in the d-dimensional Euclidean space. Thus, the algorithms in [9, 13] require the fault-free nodes to decide on a point in the d-dimensional space. In our recent work [arXiv:/1307.1051], we proposed a generalization of the consensus problem, namely Byzantine convex consensus (BCC), which allows the decision to be a convex polytope in the d-dimensional space, such that the decided polytope is within the convex hull of the input vectors at the fault-free nodes. We also presented an asynchronous approximate BCC algorithm. In this paper, we propose a new BCC algorithm with optimal fault-tolerance that also agrees on a convex polytope that is as large as possible under adversarial conditions. Our prior work [arXiv:/1307.1051] does not guarantee the optimality of the output polytope.
View on arXiv