ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1307.1252
56
94

The Complexity of Fully Proportional Representation for Single-Crossing Electorates

4 July 2013
P. Skowron
Lan Yu
Piotr Faliszewski
Edith Elkind
ArXivPDFHTML
Abstract

We study the complexity of winner determination in single-crossing elections under two classic fully proportional representation rules---Chamberlin--Courant's rule and Monroe's rule. Winner determination for these rules is known to be NP-hard for unrestricted preferences. We show that for single-crossing preferences this problem admits a polynomial-time algorithm for Chamberlin--Courant's rule, but remains NP-hard for Monroe's rule. Our algorithm for Chamberlin--Courant's rule can be modified to work for elections with bounded single-crossing width. To circumvent the hardness result for Monroe's rule, we consider single-crossing elections that satisfy an additional constraint, namely, ones where each candidate is ranked first by at least one voter (such elections are called narcissistic). For single-crossing narcissistic elections, we provide an efficient algorithm for the egalitarian version of Monroe's rule.

View on arXiv
Comments on this paper