64
15

Stability of Multi-Task Kernel Regression Algorithms

Abstract

We study the stability properties of nonlinear multi-task regression in reproducing Hilbert spaces with operator-valued kernels. Such kernels, a.k.a. multi-task kernels, are appropriate for learning prob- lems with nonscalar outputs like multi-task learning and structured out- put prediction. We show that multi-task kernel regression algorithms are uniformly stable in the general case of infinite-dimensional output spaces. We then derive under mild assumption on the kernel generaliza- tion bounds of such algorithms, and we show their consistency even with non Hilbert-Schmidt operator-valued kernels . We demonstrate how to apply the results to various multi-task kernel regression methods such as vector-valued SVR and functional ridge regression.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.