45
77

Marginal inferential models: prior-free probabilistic inference on interest parameters

Abstract

The inferential models (IM) framework provides prior-free, frequency-calibrated, posterior probabilistic inference. The key is the use of random sets to predict unobservable auxiliary variables connected to the observable data and unknown parameters. When nuisance parameters are present, a marginalization step can reduce the dimension of the auxiliary variable which, in turn, leads to more efficient inference. For regular problems, exact marginalization can be achieved, and we give conditions for marginal IM validity. We show that our approach provides exact and efficient marginal inference in several challenging problems, including a many-normal-means problem. In non-regular problems, we propose a generalized marginalization technique and prove its validity. Details are given for two benchmark examples, namely, the Behrens--Fisher and gamma mean problems.

View on arXiv
Comments on this paper