Efficient Algorithms for Multivariate Linear Mixed Models in Genome-wide Association Studies

Multivariate linear mixed models (mvLMMs) have been widely used in many areas of genetics, and have attracted considerable recent interest in genome-wide association studies (GWASs). However, fitting mvLMMs is computationally non-trivial, and no existing method is computationally practical for performing the likelihood ratio test (LRT) for mvLMMs in GWAS settings with moderate sample size n. The existing software MTMM perform an approximate LRT for two phenotypes, and as we find, its p values can substantially understate the significance of associations. Here, we present novel computationally-efficient algorithms for fitting mvLMMs, and computing the LRT in GWAS settings. After a single initial eigen-decomposition (with complexity O(n^3)) the algorithms i) reduce computational complexity (per iteration of the optimizer) from cubic to linear in n; and ii) in GWAS analyses, reduces per-marker complexity from cubic to quadratic in n. These innovations make it practical to compute the LRT for mvLMMs in GWASs for tens of thousands of samples and a moderate number of phenotypes (~2-10). With simulations, we show that the LRT provides correct control for type I error. With both simulations and real data we find that the LRT is more powerful than the approximate LRT from MTMM, and illustrate the benefits of analyzing more than two phenotypes. The method is implemented in the GEMMA software package, freely available at http://stephenslab.uchicago.edu/software.html
View on arXiv