ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1305.3945
59
192

On the Delay-Storage Trade-off in Content Download from Coded Distributed Storage Systems

16 May 2013
Gauri Joshi
Yanpei Liu
E. Soljanin
ArXivPDFHTML
Abstract

In this paper we study how coding in distributed storage reduces expected download time, in addition to providing reliability against disk failures. The expected download time is reduced because when a content file is encoded to add redundancy and distributed across multiple disks, reading only a subset of the disks is sufficient to reconstruct the content. For the same total storage used, coding exploits the diversity in storage better than simple replication, and hence gives faster download. We use a novel fork-join queuing framework to model multiple users requesting the content simultaneously, and derive bounds on the expected download time. Our system model and results are a novel generalization of the fork-join system that is studied in queueing theory literature. Our results demonstrate the fundamental trade-off between the expected download time and the amount of storage space. This trade-off can be used for design of the amount of redundancy required to meet the delay constraints on content delivery.

View on arXiv
Comments on this paper