ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1305.1707
46
548

Class Imbalance Problem in Data Mining Review

8 May 2013
Rushi Longadge
Snehalata Dongre
    AI4TS
ArXivPDFHTML
Abstract

In last few years there are major changes and evolution has been done on classification of data. As the application area of technology is increases the size of data also increases. Classification of data becomes difficult because of unbounded size and imbalance nature of data. Class imbalance problem become greatest issue in data mining. Imbalance problem occur where one of the two classes having more sample than other classes. The most of algorithm are more focusing on classification of major sample while ignoring or misclassifying minority sample. The minority samples are those that rarely occur but very important. There are different methods available for classification of imbalance data set which is divided into three main categories, the algorithmic approach, data-preprocessing approach and feature selection approach. Each of this technique has their own advantages and disadvantages. In this paper systematic study of each approach is define which gives the right direction for research in class imbalance problem.

View on arXiv
Comments on this paper