ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1304.6017
76
16

Rate-optimal Bayesian intensity smoothing for inhomogeneous Poisson processes

22 April 2013
E. Belitser
Paulo Serra
Harry Van Zanten
ArXivPDFHTML
Abstract

We apply nonparametric Bayesian methods to study the problem of estimating the intensity function of an inhomogeneous Poisson process. We exhibit a prior on intensities which both leads to a computationally feasible method and enjoys desirable theoretical optimality properties. The prior we use is based on B-spline expansions with free knots, adapted from well-established methods used in regression, for instance. We illustrate its practical use in the Poisson process setting by analyzing count data coming from a call centre. Theoretically we derive a new general theorem on contraction rates for posteriors in the setting of intensity function estimation. Practical choices that have to be made in the construction of our concrete prior, such as choosing the priors on the number and the locations of the spline knots, are based on these theoretical findings. The results assert that when properly constructed, our approach yields a rate-optimal procedure that automatically adapts to the regularity of the unknown intensity function.

View on arXiv
Comments on this paper