ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1304.3915
51
19

Single View Depth Estimation from Examples

14 April 2013
Tal Hassner
Ronen Basri
    3DV
ArXivPDFHTML
Abstract

We describe a non-parametric, "example-based" method for estimating the depth of an object, viewed in a single photo. Our method consults a database of example 3D geometries, searching for those which look similar to the object in the photo. The known depths of the selected database objects act as shape priors which constrain the process of estimating the object's depth. We show how this process can be performed by optimizing a well defined target likelihood function, via a hard-EM procedure. We address the problem of representing the (possibly infinite) variability of viewing conditions with a finite (and often very small) example set, by proposing an on-the-fly example update scheme. We further demonstrate the importance of non-stationarity in avoiding misleading examples when estimating structured shapes. We evaluate our method and present both qualitative as well as quantitative results for challenging object classes. Finally, we show how this same technique may be readily applied to a number of related problems. These include the novel task of estimating the occluded depth of an object's backside and the task of tailoring custom fitting image-maps for input depths.

View on arXiv
Comments on this paper