ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1304.2865
44
204

The BOSARIS Toolkit: Theory, Algorithms and Code for Surviving the New DCF

10 April 2013
Niko Brummer
E. D. Villiers
ArXivPDFHTML
Abstract

The change of two orders of magnitude in the ñew DCF' of NIST's SRE'10, relative to the óld DCF' evaluation criterion, posed a difficult challenge for participants and evaluator alike. Initially, participants were at a loss as to how to calibrate their systems, while the evaluator underestimated the required number of evaluation trials. After the fact, it is now obvious that both calibration and evaluation require very large sets of trials. This poses the challenges of (i) how to decide what number of trials is enough, and (ii) how to process such large data sets with reasonable memory and CPU requirements. After SRE'10, at the BOSARIS Workshop, we built solutions to these problems into the freely available BOSARIS Toolkit. This paper explains the principles and algorithms behind this toolkit. The main contributions of the toolkit are: 1. The Normalized Bayes Error-Rate Plot, which analyses likelihood- ratio calibration over a wide range of DCF operating points. These plots also help in judging the adequacy of the sizes of calibration and evaluation databases. 2. Efficient algorithms to compute DCF and minDCF for large score files, over the range of operating points required by these plots. 3. A new score file format, which facilitates working with very large trial lists. 4. A faster logistic regression optimizer for fusion and calibration. 5. A principled way to define EER (equal error rate), which is of practical interest when the absolute error count is small.

View on arXiv
Comments on this paper