ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1304.2736
43
212

The Recovery of Causal Poly-Trees from Statistical Data

27 March 2013
George Rebane
Judea Pearl
    CML
ArXivPDFHTML
Abstract

Poly-trees are singly connected causal networks in which variables may arise from multiple causes. This paper develops a method of recovering ply-trees from empirically measured probability distributions of pairs of variables. The method guarantees that, if the measured distributions are generated by a causal process structured as a ply-tree then the topological structure of such tree can be recovered precisely and, in addition, the causal directionality of the branches can be determined up to the maximum extent possible. The method also pinpoints the minimum (if any) external semantics required to determine the causal relationships among the variables considered.

View on arXiv
Comments on this paper