ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1304.1408
44
160

Restoration of Images Corrupted by Impulse Noise and Mixed Gaussian Impulse Noise using Blind Inpainting

4 April 2013
Ming Yan
ArXivPDFHTML
Abstract

This article studies the problem of image restoration of observed images corrupted by impulse noise and mixed Gaussian impulse noise. Since the pixels damaged by impulse noise contain no information about the true image, how to find this set correctly is a very important problem. We propose two methods based on blind inpainting and ℓ0\ell_0ℓ0​ minimization that can simultaneously find the damaged pixels and restore the image. By iteratively restoring the image and updating the set of damaged pixels, these methods have better performance than other methods, as shown in the experiments. In addition, we provide convergence analysis for these methods, these algorithms will converge to coordinatewise minimum points. In addition, they will converge to local minimum points (or with probability one) with some modifications in the algorithms.

View on arXiv
Comments on this paper