An efficient estimator is constructed for the quadratic covariation or integrated co-volatility matrix of a multivariate continuous martingale based on noisy and nonsynchronous observations under high-frequency asymptotics. Our approach relies on an asymptotically equivalent continuous-time observation model where a local generalised method of moments in the spectral domain turns out to be optimal. Asymptotic semi-parametric efficiency is established in the Cram\'{e}r-Rao sense. Main findings are that nonsynchronicity of observation times has no impact on the asymptotics and that major efficiency gains are possible under correlation. Simulations illustrate the finite-sample behaviour.
View on arXiv