ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1303.5403
66
73

An Entropy-based Learning Algorithm of Bayesian Conditional Trees

13 March 2013
D. Geiger
ArXiv (abs)PDFHTML
Abstract

This article offers a modification of Chow and Liu's learning algorithm in the context of handwritten digit recognition. The modified algorithm directs the user to group digits into several classes consisting of digits that are hard to distinguish and then constructing an optimal conditional tree representation for each class of digits instead of for each single digit as done by Chow and Liu (1968). Advantages and extensions of the new method are discussed. Related works of Wong and Wang (1977) and Wong and Poon (1989) which offer a different entropy-based learning algorithm are shown to rest on inappropriate assumptions.

View on arXiv
Comments on this paper