ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1303.2714
55
51

Conditions for successful data assimilation

11 March 2013
A. Chorin
M. Morzfeld
ArXivPDFHTML
Abstract

We show, using idealized models, that numerical data assimilation can be successful only if an effective dimension of the problem is not excessive. This effective dimension depends on the noise in the model and the data, and in physically reasonable problems it can be moderate even when the number of variables is huge. We then analyze several data assimilation algorithms, including particle filters and variational methods. We show that well-designed particle filters can solve most of those data assimilation problems that can be solved in principle, and compare the conditions under which variational methods can succeed to the conditions required of particle filters. We also discuss the limitations of our analysis.

View on arXiv
Comments on this paper