ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1303.1503
51
191

Argumentative inference in uncertain and inconsistent knowledge bases

6 March 2013
S. Benferhat
D. Dubois
H. Prade
ArXivPDFHTML
Abstract

This paper presents and discusses several methods for reasoning from inconsistent knowledge bases. A so-called argumentative-consequence relation taking into account the existence of consistent arguments in favor of a conclusion and the absence of consistent arguments in favor of its contrary, is particularly investigated. Flat knowledge bases, i.e. without any priority between their elements, as well as prioritized ones where some elements are considered as more strongly entrenched than others are studied under different consequence relations. Lastly a paraconsistent-like treatment of prioritized knowledge bases is proposed, where both the level of entrenchment and the level of paraconsistency attached to a formula are propagated. The priority levels are handled in the framework of possibility theory.

View on arXiv
Comments on this paper