ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1303.0561
53
35

Top-down particle filtering for Bayesian decision trees

3 March 2013
Balaji Lakshminarayanan
Daniel M. Roy
Yee Whye Teh
    BDL
ArXivPDFHTML
Abstract

Decision tree learning is a popular approach for classification and regression in machine learning and statistics, and Bayesian formulations---which introduce a prior distribution over decision trees, and formulate learning as posterior inference given data---have been shown to produce competitive performance. Unlike classic decision tree learning algorithms like ID3, C4.5 and CART, which work in a top-down manner, existing Bayesian algorithms produce an approximation to the posterior distribution by evolving a complete tree (or collection thereof) iteratively via local Monte Carlo modifications to the structure of the tree, e.g., using Markov chain Monte Carlo (MCMC). We present a sequential Monte Carlo (SMC) algorithm that instead works in a top-down manner, mimicking the behavior and speed of classic algorithms. We demonstrate empirically that our approach delivers accuracy comparable to the most popular MCMC method, but operates more than an order of magnitude faster, and thus represents a better computation-accuracy tradeoff.

View on arXiv
Comments on this paper