132
71

Action Networks: A Framework for Reasoning about Actions and Change under Uncertainty

Abstract

This work proposes action networks as a semantically well-founded framework for reasoning about actions and change under uncertainty. Action networks add two primitives to probabilistic causal networks: controllable variables and persistent variables. Controllable variables allow the representation of actions as directly setting the value of specific events in the domain, subject to preconditions. Persistent variables provide a canonical model of persistence according to which both the state of a variable and the causal mechanism dictating its value persist over time unless intervened upon by an action (or its consequences). Action networks also allow different methods for quantifying the uncertainty in causal relationships, which go beyond traditional probabilistic quantification. This paper describes both recent results and work in progress.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.