ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1302.6793
55
33

A Stratified Simulation Scheme for Inference in Bayesian Belief Networks

27 February 2013
R. Bouckaert
ArXivPDFHTML
Abstract

Simulation schemes for probabilistic inference in Bayesian belief networks offer many advantages over exact algorithms; for example, these schemes have a linear and thus predictable runtime while exact algorithms have exponential runtime. Experiments have shown that likelihood weighting is one of the most promising simulation schemes. In this paper, we present a new simulation scheme that generates samples more evenly spread in the sample space than the likelihood weighting scheme. We show both theoretically and experimentally that the stratified scheme outperforms likelihood weighting in average runtime and error in estimates of beliefs.

View on arXiv
Comments on this paper