Region-Based Approximations for Planning in Stochastic Domains

Abstract
This paper is concerned with planning in stochastic domains by means of partially observable Markov decision processes (POMDPs). POMDPs are difficult to solve. This paper identifies a subclass of POMDPs called region observable POMDPs, which are easier to solve and can be used to approximate general POMDPs to arbitrary accuracy.
View on arXivComments on this paper