ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1302.1561
65
36

Structure and Parameter Learning for Causal Independence and Causal Interaction Models

6 February 2013
Christopher Meek
David Heckerman
    CML
ArXivPDFHTML
Abstract

This paper discusses causal independence models and a generalization of these models called causal interaction models. Causal interaction models are models that have independent mechanisms where a mechanism can have several causes. In addition to introducing several particular types of causal interaction models, we show how we can apply the Bayesian approach to learning causal interaction models obtaining approximate posterior distributions for the models and obtain MAP and ML estimates for the parameters. We illustrate the approach with a simulation study of learning model posteriors.

View on arXiv
Comments on this paper