We introduce a four-parameter extended family of distributions related to the wrapped Cauchy distribution on the circle. The proposed family can be derived by altering the settings of a problem in Brownian motion which generates the wrapped Cauchy. The densities of this family have a closed form and can be symmetric or asymmetric depending on the choice of the parameters. Trigonometric moments are available, and they are shown to have a simple form. Further tractable properties of the model are obtained, many by utilizing the trigonometric moments. Other topics related to the model, including alternative derivations and M\"{o}bius transformation, are considered. Discussion of the symmetric submodels is given. Finally, generalization to a family of distributions on the sphere is briefly made.
View on arXiv