ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1301.7380
53
257

Solving POMDPs by Searching in Policy Space

30 January 2013
E. Hansen
ArXivPDFHTML
Abstract

Most algorithms for solving POMDPs iteratively improve a value function that implicitly represents a policy and are said to search in value function space. This paper presents an approach to solving POMDPs that represents a policy explicitly as a finite-state controller and iteratively improves the controller by search in policy space. Two related algorithms illustrate this approach. The first is a policy iteration algorithm that can outperform value iteration in solving infinitehorizon POMDPs. It provides the foundation for a new heuristic search algorithm that promises further speedup by focusing computational effort on regions of the problem space that are reachable, or likely to be reached, from a start state.

View on arXiv
Comments on this paper