ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1301.2305
44
5

Value-Directed Sampling Methods for POMDPs

10 January 2013
Pascal Poupart
Luis E. Ortiz
Craig Boutilier
ArXivPDFHTML
Abstract

We consider the problem of approximate belief-state monitoring using particle filtering for the purposes of implementing a policy for a partially-observable Markov decision process (POMDP). While particle filtering has become a widely-used tool in AI for monitoring dynamical systems, rather scant attention has been paid to their use in the context of decision making. Assuming the existence of a value function, we derive error bounds on decision quality associated with filtering using importance sampling. We also describe an adaptive procedure that can be used to dynamically determine the number of samples required to meet specific error bounds. Empirical evidence is offered supporting this technique as a profitable means of directing sampling effort where it is needed to distinguish policies.

View on arXiv
Comments on this paper