ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1301.0572
31
130

Expectation Propogation for approximate inference in dynamic Bayesian networks

12 December 2012
Tom Heskes
O. Zoeter
ArXivPDFHTML
Abstract

We describe expectation propagation for approximate inference in dynamic Bayesian networks as a natural extension of Pearl s exact belief propagation.Expectation propagation IS a greedy algorithm, converges IN many practical cases, but NOT always.We derive a DOUBLE - loop algorithm, guaranteed TO converge TO a local minimum OF a Bethe free energy.Furthermore, we show that stable fixed points OF (damped) expectation propagation correspond TO local minima OF this free energy, but that the converse need NOT be the CASE .We illustrate the algorithms BY applying them TO switching linear dynamical systems AND discuss implications FOR approximate inference IN general Bayesian networks.

View on arXiv
Comments on this paper