ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1212.6094
58
71

Large Scale Strongly Supervised Ensemble Metric Learning, with Applications to Face Verification and Retrieval

25 December 2012
Chang Huang
Shenghuo Zhu
Kai Yu
ArXivPDFHTML
Abstract

Learning Mahanalobis distance metrics in a high- dimensional feature space is very difficult especially when structural sparsity and low rank are enforced to improve com- putational efficiency in testing phase. This paper addresses both aspects by an ensemble metric learning approach that consists of sparse block diagonal metric ensembling and join- t metric learning as two consecutive steps. The former step pursues a highly sparse block diagonal metric by selecting effective feature groups while the latter one further exploits correlations between selected feature groups to obtain an accurate and low rank metric. Our algorithm considers all pairwise or triplet constraints generated from training samples with explicit class labels, and possesses good scala- bility with respect to increasing feature dimensionality and growing data volumes. Its applications to face verification and retrieval outperform existing state-of-the-art methods in accuracy while retaining high efficiency.

View on arXiv
Comments on this paper