ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1211.6687
53
49

Robustness Analysis of Hottopixx, a Linear Programming Model for Factoring Nonnegative Matrices

28 November 2012
Nicolas Gillis
ArXivPDFHTML
Abstract

Although nonnegative matrix factorization (NMF) is NP-hard in general, it has been shown very recently that it is tractable under the assumption that the input nonnegative data matrix is close to being separable (separability requires that all columns of the input matrix belongs to the cone spanned by a small subset of these columns). Since then, several algorithms have been designed to handle this subclass of NMF problems. In particular, Bittorf, Recht, R\é and Tropp (`Factoring nonnegative matrices with linear programs', NIPS 2012) proposed a linear programming model, referred to as Hottopixx. In this paper, we provide a new and more general robustness analysis of their method. In particular, we design a provably more robust variant using a post-processing strategy which allows us to deal with duplicates and near duplicates in the dataset.

View on arXiv
Comments on this paper