ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1211.4483
55
15

Computational aspects of Bayesian spectral density estimation

19 November 2012
Nicolas Chopin
Judith Rousseau
B. Liseo
ArXiv (abs)PDFHTML
Abstract

Gaussian time-series models are often specified through their spectral density. Such models present several computational challenges, in particular because of the non-sparse nature of the covariance matrix. We derive a fast approximation of the likelihood for such models. We propose to sample from the approximate posterior (that is, the prior times the approximate likelihood), and then to recover the exact posterior through importance sampling. We show that the variance of the importance sampling weights vanishes as the sample size goes to infinity. We explain why the approximate posterior may typically multi-modal, and we derive a Sequential Monte Carlo sampler based on an annealing sequence in order to sample from that target distribution. Performance of the overall approach is evaluated on simulated and real datasets. In addition, for one real world dataset, we provide some numerical evidence that a Bayesian approach to semi-parametric estimation of spectral density may provide more reasonable results than its Frequentist counter-parts.

View on arXiv
Comments on this paper