In our recent work, we proposed the design of perfect reconstruction orthogonal wavelet filterbanks, called graph- QMF, for arbitrary undirected weighted graphs. In that formulation we first designed "one-dimensional" two-channel filterbanks on bipartite graphs, and then extended them to "multi-dimensional" separable two-channel filterbanks for arbitrary graphs via a bipartite subgraph decomposition. We specifically designed wavelet filters based on the spectral decomposition of the graph, and stated necessary and sufficient conditions for a two-channel graph filter-bank on bipartite graphs to provide aliasing-cancellation, perfect reconstruction and orthogonal set of basis (orthogonality). While, the exact graph-QMF designs satisfy all the above conditions, they are not exactly k-hop localized on the graph. In this paper, we relax the condition of orthogonality to design a biorthogonal pair of graph-wavelets that can have compact spatial spread and still satisfy the perfect reconstruction conditions. The design is analogous to the standard Cohen-Daubechies-Feauveau's (CDF) construction of factorizing a maximally-flat Daubechies half-band filter. Preliminary results demonstrate that the proposed filterbanks can be useful for both standard signal processing applications as well as for signals defined on arbitrary graphs. Note: Code examples from this paper are available at http://biron.usc.edu/wiki/index.php/Graph Filterbanks
View on arXiv