ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1210.7447
133
41

Quasi maximum likelihood estimation for strongly mixing state space models and multivariate Lévy-driven CARMA processes

28 October 2012
E. Schlemm
R. Stelzer
ArXiv (abs)PDFHTML
Abstract

We consider quasi maximum likelihood (QML) estimation for general non-Gaussian discrete-ime linear state space models and equidistantly observed multivariate L\évy-driven continuoustime autoregressive moving average (MCARMA) processes. In the discrete-time setting, we prove strong consistency and asymptotic normality of the QML estimator under standard moment assumptions and a strong-mixing condition on the output process of the state space model. In the second part of the paper, we investigate probabilistic and analytical properties of equidistantly sampled continuous-time state space models and apply our results from the discrete-time setting to derive the asymptotic properties of the QML estimator of discretely recorded MCARMA processes. Under natural identifiability conditions, the estimators are again consistent and asymptotically normally distributed for any sampling frequency. We also demonstrate the practical applicability of our method through a simulation study and a data example from econometrics.

View on arXiv
Comments on this paper