ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1210.0805
44
40

Robust PCA and subspace tracking from incomplete observations using L0-surrogates

2 October 2012
Clemens Hage
M. Kleinsteuber
ArXivPDFHTML
Abstract

Many applications in data analysis rely on the decomposition of a data matrix into a low-rank and a sparse component. Existing methods that tackle this task use the nuclear norm and L1-cost functions as convex relaxations of the rank constraint and the sparsity measure, respectively, or employ thresholding techniques. We propose a method that allows for reconstructing and tracking a subspace of upper-bounded dimension from incomplete and corrupted observations. It does not require any a priori information about the number of outliers. The core of our algorithm is an intrinsic Conjugate Gradient method on the set of orthogonal projection matrices, the so-called Grassmannian. Non-convex sparsity measures are used for outlier detection, which leads to improved performance in terms of robustly recovering and tracking the low-rank matrix. In particular, our approach can cope with more outliers and with an underlying matrix of higher rank than other state-of-the-art methods.

View on arXiv
Comments on this paper