ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1207.2079
58
20

Compressed Sensing of Approximately-Sparse Signals: Phase Transitions and Optimal Reconstruction

9 July 2012
Jean Barbier
Florent Krzakala
M. Mézard
Lenka Zdeborová
ArXivPDFHTML
Abstract

Compressed sensing is designed to measure sparse signals directly in a compressed form. However, most signals of interest are only "approximately sparse", i.e. even though the signal contains only a small fraction of relevant (large) components the other components are not strictly equal to zero, but are only close to zero. In this paper we model the approximately sparse signal with a Gaussian distribution of small components, and we study its compressed sensing with dense random matrices. We use replica calculations to determine the mean-squared error of the Bayes-optimal reconstruction for such signals, as a function of the variance of the small components, the density of large components and the measurement rate. We then use the G-AMP algorithm and we quantify the region of parameters for which this algorithm achieves optimality (for large systems). Finally, we show that in the region where the GAMP for the homogeneous measurement matrices is not optimal, a special "seeding" design of a spatially-coupled measurement matrix allows to restore optimality.

View on arXiv
Comments on this paper