ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1207.1550
57
208

Velocity/Position Integration Formula (I): Application to In-flight Coarse Alignment

6 July 2012
Yuanxin Wu
Xianfei Pan
ArXivPDFHTML
Abstract

The in-flight alignment is a critical stage for airborne INS/GPS applications. The alignment task is usually carried out by the Kalman filtering technique that necessitates a good initial attitude to obtain satisfying performance. Due to the airborne dynamics, the in-flight alignment is much difficult than alignment on the ground. This paper proposes an optimization-based coarse alignment approach using GPS position/velocity as input, founded on the newly-derived velocity/position integration formulae. Simulation and flight test results show that, with the GPS lever arm well handled, it is potentially able to yield the initial heading up to one degree accuracy in ten seconds. It can serve as a nice coarse in-flight alignment without any prior attitude information for the subsequent fine Kalman alignment. The approach can also be applied to other applications that require aligning the INS on the run.

View on arXiv
Comments on this paper